Manual for JVnTextPro

Version: 2.0

Developers:
Cam-Tu Nguyen ncamtu@gmail.com
Xuan-Hieu Phan hieupx@gmail.com

Thu-Trang Nguyen trangnt84@gmail.com

Contents

1
2

O o

Introduction

JVnTextPro

2.1 How to call J)VnTexPro from command line
2.2 JVnTextPro API
2.3 JVnTextPro Service
Sentence Segmentation
Sentence Tokenization
Word Segmentation
Part of Speech Tagging (POS Tagging)
How to Develop New Tagging Tools into JVnTextPro
7.1 Package jvntextpro.data

7.2 Develop a New Tagging Tool into JVnTextPro

ACKNOWIEAZEMENTS ..ottt e e st e e e e e sesabbaeeeeeessesnsbaaeeeeeessenansranenes

References

1 Introduction

JvnTextPro is a Java open source tool, which is based on Conditional Random Fields (CRFs) [1,
2] and Maximum Entropy (Maxent) [3], for Natural Language Processing (NLP) in Vietnamese.
This tool consists of several steps (or sub-problem tools) for Vietnamese preprocessing and
processing designed in a pipeline manner in which output of one step is used for the next step.

Input | Sentence Sentence Word Part-of-speech |Output
- Tagging —

A 4
A 4

Segmentation > Tokenization Segmentation

It depends on users to process their data in the whole pipeline or just call some sub-problem
steps among these steps. There are two methods to call only some of those steps:

- Create a JVnTextPro object and specify the processing option (initialize sub-problem
tools that are necessary only).
- Create and call directly the sub-problem tools (JvnSegmenter, ...).

Note that the input for each sub-problem tool is required in correct format to make sure it
works properly. JVnTextPro was built on Java (version 6.0). We need Java Runtime
Environment to work with the tool.

2 JVnTextPro

2.1 How to call JVnTexPro from command line
Command Line

Java —mx1024M —cp [classpath] jvntextpro.JVnTextProTest —modeldir [modelDir]
[options..] —input [infile/indirectory] (-filetype (Filetype))

Suppose that we are in the outermost folder of JvnTextPro, we can set the above parameters
as follows:
[classpath]=bin:lib/Ibfgs.jar:lib/args4j.jar (or bin;lib\Ibfgs.jar;lib\args4j.jar in Windows)

[modelDir] = path to the model containing models of sub-problem tools of JVnTextPro
[options...] = initialize one or more tools (-senseg, -wordseg, -sentoken, -postag) to process text
in Vietnamese. Users should ensure the input data is in the right format for each tool to work

properly. For example, if we want to perform part-of-speech tagging, the input should have
words segmented. If option —input is set to a directory, all files ended with .txt in the specified

directory will be considered as input files unless we explicitly set to other file types by using
option —filetype (optional).

The output of JVnTextProTest is “.pro” file if —input is a file, a set of “.pro” files if —input is a
directory.

Example:

Java -mx1024M -cp bin;libs\Ibfgs.jar;libs\args4j.jar jvntextpro.JVnTextProTest
-modeldir models -senseg -sentoken -wordseg -postag -input samples\inputl.txt

If the input were performed sentence segmentation and tokenization, you may want to
perform word segmentation and POS tagging only. The command to do it as follows (we skip
the options —senseg and —sentoken):

Java -mx1024M -cp bin;libs\lbfgs.jar;libs\args4j.jar jvntextpro.JVnTextProTest
-modeldir models -wordseg -postag -input samples\inputl.txt.sent.tkn

2.2 JVnTextPro API

You are able to integrate JvnTextPro for your own purpose via our API. Basically, JVnTextPro
accepts Vietnamese texts in Unicode or Composite Unicode.

Step 1: Create a JVnTextPro and initialize processing sub-tools

JVnTextPro textPro = new JVnTextPro();

textPro.initSenSegmenter([modelDir of Sentence segmentation]);
textPro.initSenTokenizer();

textPro.initSegmenter([modeldir to Word Segmentation model folder]);
textPro.initPosTagger([modeldir to part-of-speech tagging model folder]);

Note that the initializations are the most time-consuming step, hence we should initialize one
JVnTextPro once and use it for later calls.

Step 2: Call process() method to process input text in pipeline manner of initialized tools or
call individual methods to perform text processing with different sub-problem tools.

textPro.process([input String]);
or

textPro.senSegment([input String]);
textPro.sentToken([input String]);

textPro.wordSegment([input String]);
textPro.posTagging([input String]);

2.3 JVnTextPro Service
We provided a service interface for systems in different programming languages to connect to
and benefits from our Vietnamese text processing.

4

Server side: run the service using

Java —mx1024M —cp [classpath] jvntextpro.service.TaggingService —moderdir
[modeldir] [options..]

where classpath, modeldir, and options can be set the same as in Section 3. You may enable
one or more processing tools of JVnTextPro as described in the previous section. It is also likely
to have several versions of TaggingService in different servers and provide different services
(one server for word segmentation, one server for POS tagging, etc ..)

After running this command line, the service will listen at the port 2929. Data stream sent to

this service need to be in UTF-8 format and ended with ‘0’.
Client side:

- Create a TaggingClient object, open the connection

TaggingClient client = new TaggingClient([server], 2929); //server address
and port
client.connect();

- Perform text processing

[client_process(input);

- Close connection when necessary

| client.close();

3 Sentence Segmentation

It is the basic preprocessing functionality of JVnTextPro. It segments a paragraph of text into
sentences. Note that some time, the dot notation ‘.’ Is not necessary indicate the end of the
sentence. The problem of sentence segmentation is mostly dealing with the ambiguity of end of
sentence notations.

By default, before a paragraph of text is segmented into sentences, we will convert the text
from Composite Unicode to Unicode (if necessary). By doing so, our system is able to work with

Composite Unicode.

Command Line: Suppose that you are at the outermost folder of JVnTextPro, you can perform

sentence segmentation for file in the sample directory using the following command line.

Jjava -cp libs\args4j.jar;libs\lbfgs.jar;bin jvnsensegmenter.JVnSenSegmenter
-modeldir models\jvnsensegmenter -inputfile samples\inputl.txt

We also can replace option “-inputfile samples\inputl.txt” by “-inputdir samples”. In this case,
the tool will take all the “.txt” files as input files. The output of sentence segmentation is one (if
—inputfile is used) or a set (if —inputdir is used) of “.sent” files.

4 Sentence Tokenization
In normal writing style, most of the marks in sentences are attached to previous words. The
Sentence Tokenization is to make them apart, and make the input cleaner for later processing.

Input & Output: the sentence “Even that it rains, we still go to school” = “Even that it rains,

I”

we still go to school”. Note the white space before the comma in the sentence.

Command Line: Suppose that you are at the outermost folder of JVnTextPro, you can perform

sentence tokenization for file in the sample directory using the following command line.

Java —Cp bin;libs\args4j.jar;libs\lbfgs.jar Jjvntokenizer.JVnTokenizer
—inputfile samples\inputl.txt.sent

We also can replace option “-inputfile samples\inputl.txt.sent” by “-inputdir samples”. In this
case, the tool will take all the “.sent” files as input files. The output of sentence segmentation is
one (if —inputfile is used) or a set (if —inputdir is used) of “.tkn” files.

5 Word Segmentation
JvnSegmenter is a Java-based and open-source Vietnamese word segmentation tool. The
segmentation model in this tool was trained on about 8,000 labeled Vietnamese text sentences

using conditional random fields (FlexCRFs). Refer to our paper at PACLIC 2006 for more

information. This tool would be useful for Viethamese NLP community. We highly appreciate
any bug report, comment, and suggestion that help to fix errors and improve the segmentation
accuracy.

The previous version of word segmentation is available at
http://jvnsegmenter.sourceforge.net/.

Input & Output format:

Input: Hoc sinh hoc sinh hoc =>Output: Hoc_sinh hoc sinh_hoc

Command Line:

Java -mx512M -cp bin;libs\args4j.jar;libs\lbfgs.jar jvnsegmenter.WordSegmenting

-modeldir models\jvnsegmenter -inputfile samples\inputl.txt.sent.tkn

We also can replace option “-inputfile samples\inputl.txt” by “-inputdir samples”. In this case,
the tool will take all the “.tkn” files as input files. The output of sentence segmentation is one (if
—inputfile is used) or a set (if —inputdir is used) of “.wseg” files.

6 Part of Speech Tagging (POS Tagging)

JvnTagger is a tool for Vietnamese Part-of-Speech tagging based on Conditional Random Fields
[1, 3] (CRFs) and Maximum Entropy [2]. JVnTagger was built as a part of the national project
“Building Basic Resources and Tools for Vietnamese Language and Speech Processing” (VLSP)
during 2 years (from 2007 to 2009). The training datasets consist of 10.000 and 20.000
sentences from Vietnamese TreeBank, which are subsequently referred to as VTB-10,000 and
VTB-20,000. 5-fold-cross validation with CRFs on VTB-10,000 shows that we are able to achieve
the result of 93.45% of F1-measure. Experiments with Maxent on VTB-20,000 using 10-fold-
cross validation show the best result of 93.32% of F1-measure.

Note: The Tagger integrated into JVnTextPro pipeline is MaxentTagger.

Input and Output Formats:

Input: Text with words segmented. For example: Hoc sinh hoc sinh_hoc

Output: Text with words annotated with POS tags. For example: Hoc sinh/N hoc/V
sinh_hoc/N ./.

Command line

Java -—-mx512M ——cp [classpath] jtextpro.POSTagging —tagger [tagger]
—modeldir [modeldir] —inputfile/-inputdir [inputfile/inputdir]

Suppose that we are in the outer folder of JvnTagger, we can set the above parameters as
follows:
[classpath] = bin:lib/Ibfgs.jar (or bin;lib\lbfgs.jar in Windows)

[tagger] = crfs or maxent
[modeldir] = directory containing the model of crfs (maxent) if tagger is set to crfs (or maxent)

[inputfile/inputdir]=path to file (directory) containing data to be processed.

For example:

Java -mx512M -cp bin;libs\args4j.jar;libs\Ibfgs.jar jvnpostag.POSTagging
-tagger maxent -modeldir models\ jvnpostag\maxent -inputfile
samples\inputl._txt.sent.tkn._wseg

We also can replace option “-inputfile samples\inputl.txt” by “-inputdir samples”. In this case,
the tool will take all the “.wseg” files as input files. The output of sentence segmentation is one
(if —inputfile is used) or a set (if —inputdir is used) of “.pos” files.

Tags and Explaination

1. N: Noun (danh ttr) 12. C: conjunction (lién tir)
2. Np: Personal Noun (danh tir riéng) 13. I: Interjection (thén tir)

3. Nc: Classification Noun (danh tir chi 14. T: Particle, modal particle (tro tt,

loat) tiéu tir)
4. Nu: Unit Noun (danh tir don vi) 15. B: Words from foreign countries
5. V: verb (dong tr) (Ttr muon tiéng nude ngoai vi du
6. A: Adjective (tinh tir) Internet, ...)
7. P: Pronoun (dai ttr) 16. Y: abbreviation (tir viét tit)
8: L: attribute (dinh ttr) 17. X: un-known (céc tir khong phan
9. M: Numeral (s6 tir) loai duoc)
0. R: Adjunct (phu tur) 18. Mrk: punctuations (cac ddu cau)

1
11. E: Preposition (gidi tir)

7 How to Develop New Tagging Tools into JVnTextPro

7.1 Package jvntextpro.data

Classes

Explanations

TWord

TWord is short for tagged words in which the main variable members are
the main token to be tagged and tag.

For example, in jvnsegmenter, main token is syllable but in jvntagger,
main token is word. Tag in jvnsegmenteris B_W, |_W, ..

We also provide an auxiliary data structure that is secondarytags to store
secondary tags, in which important information to predict main tags is
stored. For example, in noun phase chunking, POS tag (secondary tags) is
important beside words in sentences (which are token)

Sentence

Sentence is a list of TWord objects.

DataReader

Extend this class to read in data in different formats into an array of
Sentence. Implementations of this class are WordDataReader and
POSDataReader of jvnsegmenter and jvntagger.

If tags are available for input text (in the case of reading training data), they
are assigned to TWord objects of Sentence. Otherwise, tags of TWord
objects are set to null.

DataWriter

Extend this class to write an array of Sentence of TWord objects with
annotated tags (generated by machines) into a specific output format. The
two implementations of DataWriter are WordDataWriter and
POSDataWriter, in which the output of WordDataWriter is text with
words specified such as “Mai_mii tudi 20” and output of POSTagger is
“Mai_méi/R tubi/N 20/M”

ContextGenerator

Take one position of some Sentence object as an input. The major function
of ContextGenerator is to gather context surrounding that text.

TaggingData

Contains an array of ContextGenerator objects, performs gathering
information according to added ContextGenerator objects for the whole
Sentence.

7.2 Develop a New Tagging Tool into JVnTextPro
Several steps to develop a new tagging tool, which is similar to JvnSegmenter and
JvnTagger, are described in the following:

1. Define Tags, input format, output format and implement DataReader and DataWriter
correspondingly.
For example:

- In word segmentation, we defined 3 tags B_W (begin of word), |_ W (inside of word), and O
for syllables.

- Input format of word segmentation is normal text in which syllables are separated by white
spaces, and sentences are optionally segmented. WordReader extended DataReader to
read in an array of input Sentence of TWord (tags are B_W, |_W, 0O).

“awon

- Output format of word segmentation is text with syllables joined by to form words.

WordWriter extended DataWriter to write out array of Sentence of TWord in that format.

2. Prepare training data that is text in the defined input format and annotated with defined
tags.

3. Implements one (or more) ContextGenerator classes.

- For example: in word segmentation, there are 4 classes extended ContextGenerator. All of
them are added to a TaggingData to generate contexts for training, and input string for
later labeling.

4. Extend jvntextpro.data.TrainDataGenerating to generate training data based on
ContextGenerator objects and in the format of input files for FlexCRFs++ as described in
http://flexcrfs.sourceforge.net/ (the format is the same for FlexCRFs++ and jmaxent). See

WordTrainGenerating and POSTrainGenerating for references.

For re-training word segmentation and pos tagging model, you can modify
featuretemplate files and use WordTrainGenerating, and POSTrainGenerating to
regenerate training data for retraining word segmentation and POS tagging models.

5. Train a new model with FlexCRFs++ and jmaxent
For FlexCRFs++, see http://flexcrfs.sourceforge.net/ for more details about training with

the training data generated from step 4 above.
For Jvaxent, use jmaxent.Trainer to train a model with Maximum Entropy for file
generated from step 4 above.

6. Implement a new tagging class to label new input data.
- Implement a class similar to jvntagger.CRFTagger (if a model of CRFs was trained) or
jvntagger .MaxentTagger (if a model of Maxent was trained)

7. Update jvntextpro.JVnTextPro and jvntextpro.JVnTextProTest to include the new
tool.

- Add the class defined in 6 to JvnTextPro.

- Create an initialization methods like initSenSegmenter or initSegmenter in JVnTextPro

- Create a wrapping function to perform new tagging functionality with checking whether this
functionality is enabled (initialized or not). For example, wordsegment method of
JVnTextPro is one wrapping function for word segmentation.

- Add a call to the wrapping function in the method process of JvnTextPro at a right
position of the pipeline chain. It is similar to putting word segmentation before Pos tagging
to meet the input requirement of POS tagging.

8 Acknowledgements

We would like to thank Trung-Kien Nguyen for spending a lot of time to annotate the training
data for Word segmentation. We would like to thank the research project VLSP and
VietTreeBank group for providing us the training data for Pos tagging.

We would also like to thank Sourceforge.net for hosting this project.
This tool is under the terms of GNU. Any reference to this tool should be cited as:

Cam-Tu Nguyen, Xuan-Hieu Phan, Thu-Trang Nguyen, JVnTextPro: a tool to process Vietnamese
texts, version 2.0, 2010.

9 References
[1] Lafferty, J., McCallum, A., Pereira, F.: Conditional random fields: Probabilistic models for

segmenting and labeling sequence data. In: Proc. 18th International Conf. on Machine
Learning, Morgan Kaufmann, San Francisco, CA (2001) 282-289

[2] Kamal Nigam, John Lafferty, Andrew Mccallum. In 1JCAI-99 Workshop on Machine
Learning for Information Filtering (1999), pp. 61-67

[3] FlexCRFs: http://flexcrfs.sourceforge.net/

10

